Characterizations of Flip-Accessibility for Domino Tilings of the Whole Plane
نویسندگان
چکیده
It is known that any two domino tilings of a polygon are flip-accessible, i.e., linked by a finite sequence of local transformations, called flips. This paper considers flip-accessibility for domino tilings of the whole plane, asking whether two of them are linked by a possibly infinite sequence of flips. The answer turning out to depend on tilings, we provide three equivalent characterizations of flip-accessibility. Résumé. Étant donnés deux pavages par dominos d’un mme polygone, on sait qu’on peut toujours passer de l’un l’autre en effectuant un nombre fini de transformations locales, appelées flips ; ces pavages sont dits flip-accessibles. Dans ce papier, nous étendons cette notion de flip-accessibilité aux pavages par dominos du plan entier, en s’autorisant cette fois effectuer un nombre infini de flips. Dans ce cas, la flip-accessibilité dépend des pavages considérés et nous en donnons trois caractérisations équivalentes.
منابع مشابه
Flip Invariance for Domino Tilings of Three-Dimensional Regions with Two Floors
We investigate tilings of cubiculated regions with two simply connected floors by 2×1×1 bricks. More precisely, we study the flip connected component for such tilings, and provide an algebraic invariant that “almost” characterizes the flip connected components of such regions, in a sense that we discuss in the paper. We also introduce a new local move, the trit, which, together with the flip, c...
متن کاملDistances on rhombus tilings
The rhombus tilings of a simply connected domain of the Euclidean plane are known to form a flip-connected space (a flip is the elementary operation on rhombus tilings which rotates 180◦ a hexagon made of three rhombi). Motivated by the study of a quasicrystal growth model, we are here interested in better understanding how “tight” rhombus tiling spaces are flip-connected. We introduce a lower ...
متن کاملOn the connectivity of three-dimensional tilings
We consider domino tilings of three-dimensional cubiculated manifolds with or without boundary, including subsets of Euclidean space and threedimensional tori. In particular, we are interested in the connected components of the space of tilings of such regions under local moves. Building on the work of the third and fourth authors [19], we allow two possible local moves, the flip and trit. Thes...
متن کاملAlternating sign matrices and domino tilings
We introduce a family of planar regions, called Aztec diamonds, and study the ways in which these regions can be tiled by dominoes. Our main result is a generating function that not only gives the number of domino tilings of the Aztec diamond of order n but also provides information about the orientation of the dominoes (vertical versus horizontal) and the accessibility of one tiling from anoth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007